
P H Y S I C A L R E V I E W V O L U M E 1 3 6 , N U M B E R 4B 23 N O V E M B E R 1 9 6 4 

Scattering by the Singular Potential — gr~4 Inr 
TAI TSUN W U * 

Summer Institute of Theoretical Physics, University of Wisconsin, Madison, Wisconsin 
(Received 1 July 1964) 

In connection with higher order leptonic weak interactions, divergent series containing an infinite number 
of logarithmic factors are encountered. In order to have some understanding of series of this type, the prob­
lem of scattering by the singular potential -gr~* In r is examined for the special case of zero energy. This prob­
lem has the advantage that the correct answer can be obtained by other means. Generalization to the po­
tential -gr~xln r with X > 3 is also considered. 

1. INTRODUCTION 

RECENTLY, attempts have been made to obtain 
some understanding of the corrections to processes 

involving weak interactions. Lee and Yang1 have de­
veloped for this purpose the ^-limiting formalism for the 
intermediate boson, and Feinberg and Pais2 have 
studied higher order weak interactions restricted to the 
uncrossed ladder diagrams. In both cases, summation 
of divergent power series is a necessary step. As a 
possible check on this procedure of summing divergent 
power series, Khuri and Pais3 and Tiktopoulos and 
Treiman4 considered the exactly solvable problem of 
scattering at zero energy by the singular power poten­
tial gr~x, where X>3. In this case, summing the Born 
series after first introducing a cutoff does indeed give 
the correct answer. However, the relevance of this 
model to field theory is by no means clear. 

In connection with higher order leptonic weak inter­
actions, it has been proposed5 to sum a divergent series 
involving logarithmic factors. Although this procedure 
does yield a definite answer taking into account all 
possible Feynman-Dyson diagrams, summing such a 
series must be considered to be even more dubious than 
summing a divergent power series of the kind mentioned 
above. Indeed, while divergent power series have been 
encountered in various branches of physics, divergent 
series with an infinite number of logarithmic factors 
seem to be something novel. I t is therefore the purpose 
of this paper to study a potential problem where a series 
of this variety appears. For the sake of definiteness, we 
consider first the scattering by the potential — gr~4 lnr, 
where g > 0 and hence the potential is repulsive near the 
origin. Some generalization to other powers is discussed 
in Appendix E. As in the earlier works,8*4 we restrict 
ourselves to the case of zero energy. 

The procedure is as follows. After introducing a cutoff 
A -1 in the radial coordinate, we expand the scattering 
length in powers of the coupling constant g, with coeffi-
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cients that depend on various powers of A and InA. In 
Sec. 2, we rearrange the various terms and define the 
series Bn(A) to be summed. In Sec. 3, we study the two 
simplest series by a method that can partially be 
generalized to all n, as shown in Sec. 4. The result is that 
none of the Bn(A) approach any limit for the potential 
without a cutoff. Some properties of these functions 
Bn(A) are given in Sec. 5 together with a comparison 
with the case of higher order leptonic weak interactions 
mentioned above. 

2. FORMULATION OF THE PROBLEM 

We consider the radial differential equation 

a^/dr2+gr~4 ( ln r )^=0 , (2.1) 

with the boundary conditions ^(0) = 0 and \p(r)~r as 
r —» co. The scattering length A is denned by 

4 = limM00|>(r)--r]. (2.2) 

In order to use Born series, we introduce a cutoff A-1. 
Thus, (2.1) is replaced by 

^M)/^=|r^ 4 1 h^ ( r 'A ) ' !or ZVi ^ 
[0 , for r<A~l, 

with the boundary conditions ^(0,A) = 0 and \f/(r,A)^r 
as r—>oo. Similarly define 

4(A) = l i m ^ [ * ( r ^ ) - r ] . (2.4) 

Equation (2.3) together with the boundary conditions 
is equivalent to the integral equation 

/ •OO 

iP(r,A) = r+g / drf rf~" I n / min ( / - />£(/ , A), (2.5) 
A-1 

which may be solved formally by iteration. Let 

*o(r,A) = r , (2.6) 
and 

^i(r,A) = g / drV~* In/ min(r, /)M^A) (2.7) 
./A-1 

for n^O. According to (2.4), (2.6), and (2.7), define 
^40(A) = 0 and, for n>l, 

/ •OO 

An(A) = $n(«>A) = g ^ / - 3 l n r V n - i ( / ; A ) . (2.8) 
./A"1 
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In view of (2.6-2.8), An(A) must be of the following We proceed to calculate F(x) and F'(x) approxi-
form: mately. The function F(x) satisfies the integral equation 

An(A) = gnA2"~1 £ anm(lnA)*-«. (2.9) 
ra=0 

Let ^ 

r 
I dxf{x—xf 

J o 

F(x)-g\ dx'(x-xf)\nxfF(x') = x. (3.7) 

B (A)= T\ anmgnA2n~1(hiA)n'~m (2.10) We formally iterate this equation by defining 

F0(x) = x, (3.8) 

and 

4(A) = £ ^ B ( A ) = L 5 ro(A). (2.11) 

then formally 
ana 

(A) = Y. AJA) = Y B»(A). (2A1) 
Fn+i(oc) = g dx'{x-~x') \nx'Fn{xf) (3.9) 

0 

I t is the purpose of this paper to study in detail the 
behavior of Bm(A) for large A. For the sake of orienta- for n^Q. I t is then seen that Fn(x) is the product of 
tion and later comparison, in Appendix A we compute x2n+1 with a polynomial of order n in lnx. We shall keep 
approximately the scattering length A for small g. only the two leading terms: 

3. PROPERTIES OF THE FIRST TWO TERMS Fn(x)^gnx2n+1[Mn(fax)n+Nn(lnx)n-lli. (3.10) 

In this section, we compute explicitly B±(A) and With the formula 
B2(A). In order that at least a portion of the considera­
tion can be generalized to all Bn(A), we follow a some- C 
what devious sequence of steps. The more straight- ^xx K^x) 
forward calculation, which involves no less algebraic 
manipulation, is relegated to Appendix B. ^p~\%v J2(—l)Q~kp~q+k(lnx)kql/kl (3.11) 

We begin with a relation between the scattering &=o 
length A and the Jost function,6 as given by (C5) of 
Appendix C: f° r a n v non-negative integer q, the substitution of (3.10) 

r00 into (3.9) gives the recurrence relations 
MA)= ^ { C / M ) ] - 2 - l } , (3.1) 

Jo Mn+1=Z(2n+2)-i- (2»+3)-1]Jfw , (3.12) 

where f(r,A) is the Jost function for the potential cutoff 
at A"1. Let f(r) = f(r, °o), then /(r,A) has the important N^i= [ ( 2 » + 2 ) " 1 - (2n+3)~1']Nn 

- ( » + l ) [ ( 2 » + 2 ) - * - (2n+3)-2~}Mn. (3.13) 

The solutions of (3.12) and (3.13) with the boundary 
conditions MQ= 1 and Afo=0 are 

M . = [ ( 2 ^ + l ) ! ] - 1 , (3.14) 
and 

n 

i \ r „ = - [ ( 2 » + l ) ! ] - ' [ > - ! £ ( 2 £ + l ) - a (3.15) 

Summation over n gives, with the help of (B20), 

F(x)^x\ z~~l sinhs;— (2 ln^)"1 coshs 

-z-11 dz'zf~l sinhs' cosh(z-zO 1 , (3.16) 

where 
z=(gx2 Inx)1*2. (3.17) 

A comparison with the calculation of Appendix B shows ^ , . ,. r ^ , N . 
. I , , *J J 4-u • u + +. 4. f+ -The derivative of b (x) is obtained from 
that we have avoided the simultaneous treatment of two v J 

variables by using the Jost function. F'(x) = dF(x)/dx= 3F{x)/dx 
6 R. Jost, Helv. Phys. Acta 20, 256 (1947). + « [ ! + (2 \nx)-l~]x~ldF(x)/dz'i (3.18) 

/(r,A) = /(r) 
for r>A -1 . 

It is convenient to use the variable 

(3.2) 

x=r~1, (3.3) 
and define 

F(x,A) = r-if(r,A), (3.4) 

F(x) = r-1f(r). (3.5) 

It follows from (3.1) and the 
/(r,A) that 

fA 
A(A) = —gl dxlnx 

Jo 

differential 

rd -i 
~F(x,A) 

~dx 

equation for 

—2 

7 

which, by (3.2) and (3.5), can be simplified to 

A(A) = -gf dxh ixZF,(x)2~2 (3.6) 



w=InA 
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and the result is and 

F /(^)-coshs-(2 In*)-* ^ i ( 2 ) ( A ) = - ^ y dxseeh*(g(M*)v* 

x\zsinhz-f ^ V ^ s i n h ^ s i n h ^ - s o l . (3.19) f . f 

It remains to substitute (3.19) into (3.6). By (3.11), ^. 
we can obtain BQ(A) by using the first term of (3.19) and X s i n h z ' sinh£(gco)mx—z'~] \ ) 
considering lnx to be a constant; more precisely: J / 

/.A I t follows from (3.26) and (3.27) that 
B0(A)=~g dxo>Zcosh(gVW*x)y-2\u=lnA, (3.20) 

0 ^ i ( 1 ) ( A ) - | ^ 2 ( l n A ) - i / 2 | t a n h ( g A 2 InA)1'2 

where o> is taken to be a constant in performing the M _ 
integration over x. Evaluation of the right-hand side of + I dx x~l tanh(g#2 lnA)1/2 , (3 28) 
(3.20) leads to J0 J ' 

and 
a o ( A )= - g v 2 ( l n A ) v 2 tenh(gA2lnA)1/2. (3.2i) £i(2)(A)=_gm(lnArmf^ teA)1'2dzsech% 

The computation of JBI(A) is far more complicated. ° 
Equation (3.11) may be written in the following form V Cz 1 
for p> 0: X U s i n h z - / dz'z1-1 s ink 7 sinh ( s - *')• , (3.29) 

J o 

or 

^i(A) = k1 / 20nA)-1 /2sechl2 

=£[(-,)'y"'r<fev-'"*]i_,.,' <3-22) x f o - ^ / ^ ^ a - . ^ 
+tanhfi / dzsr1 sinhz sinh ( 0 - g) , (3.30) 

' o 
where S is the integration operation »Q 

Sh(x)= / dxfh(xf)/xf. (3.23) where 
•/o 0=(gA2lnA)1/2. (3.31) 

In the form (3.22), on the right-hand side, p and q T h f i s t h e d™[*ed answer. 
appear only in the integrand. Therefore, with suitable Asymptotically, as A->co, 
conditions on SF, B0(A) = - ^ ( l n A ^ + ^ l ) , (3.32) 

and 

J'W.W *(A)-fc"<bA)"+«<l). (3.33) 
° , , , 4. ASYMPTOTIC BEHAVIORS OF £n(A) 

oo r / d \k rx n v ; 

= E ( - 1 ) 1 — J 5* I da/frfr',*)) . (3.24) I t is seen from (3.30) that BX(A) is a rather compli-
A=O L \du/ Jo JI c^in* cated function. Indeed, it is so much more complicated 

than #i(A) that one shudders at the task of finding 
Equation (3.24) may be used to find Bi(A). By (3.19), B2(A). Yet the asymptotic behavior of £X(A), as given 
(3.6), (2.11), and (3.21), BX(A) consists of two par ts : by (3.33), is extremely simple. In this section, we 

H fAW B (i>fAU-B « m « ?<rt S e n e r a l i z e (3.32H3.33) to all 3n(A). 
^ ( A ) - ^ >(A)+£i< HA), (3.25) F o r t h i s p u r p o S 6 j w e g t u d y t h e a s y m p t o t i c b e h a v i o r 

where o f ^i(A) in some detail. Since the integral on the right-
hand side of (3.29) approaches a finite limit as A—><*> 

2M»(A)=fo/a») {A<fe*-W bCCaUSe ° f t h e f a C t ° r s e c h 3 s i n t h e i n t e g r a n d ' w e h a v e 

L •/<• 51(2)(A) = 0 ( ( l n A ) - 1 ' 2 ) (4.1) 

X t a n h (goox2)1/2
 s (3.26) as A -+ co. This is a direct consequence of the fact that, 

-11 «=inA, in (3.19), the first term on the right-hand side is of the 
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order of ez, while the second term is of the order of ze% 
as s —>co. More generally, the nth term of F' (x), that is, 
the coefficient of (\nx)~n

y is of the order of znez. 
Therefore, 

Bn(A) = S na) (A)+0((lnA)~1/2), (4.2) 

where BJl)(A) is given by a generalization of (3.26) by 
(3.24): 

XL(d/da>)nSn(gG>yi2 t a n h C g w ^ ^ U ^ i n x . (4.3) 

As #—><», (4.3) gives, by dropping the hyperbolic 
tangent factor, as A—*<*> 

^ n ( i ) ( A ) = ( - l ) ^ C r i
1 V 2 ( l n A ) 1 / 2 + 0 ( ( l n A ) - 1 / 2 ) , (4.4) 

where Cn
112 is the binomial coefficient. Consequently, 

^ n (A)=(- l ) w + 1 C n
1 V 2 ( lnA) 1 / 2 +0(( lnA)-- 1 / 2 ) (4.5) 

as A —>oo. 

5. DISCUSSIONS 

The present situation differs greatly from that of a 
power potential, where no approximation is made in the 
sense that all terms are kept throughout the manipula­
tion.3,4 Indeed, since all terms are kept, it is difficult to 
imagine any failure to obtain the correct answer. This is 
not at all the case here, and it may be of some interest to 
note that none of the Bn(A) approach a finitejimit as 
A—>oo. However, observe that essentially the correct 
answer is obtained if only BQ is retained with A reinter­
preted as g~1/2. Secondly, we may try to sum the right-
hand side of (4.5) over all n. Since by the binomial 
theorem 

Z(-%)nCn
1/2-(l~x)1I2=2-2N-1(Nl)-2(2N)l 

x [ dx,(l-x,)-m~n{oo-x,)N, (5.1) 
Jo 

we have, by setting x=l, 

E (-l)nCnm=2-2N(Nl)-2(2N)\. (5.2) 

Hence, by Sterling's formula 

E ( - l ) » C n 1 / 2 ^ 0 . (5.3) 

I t is perhaps gratifying to find that a zero appears in 
the sum of the asymptotic formulas of Bn(A) to avoid 
a result that is unambiguously infinite. 

Thirdly, let us define the sum 

I t follows from (3.24), (3.21), and (3.20) that 

/•OO 

A = -g dx(lnx)Zco$h(gx2 Inx)1'2!-2, (5.5) 
Jo 

which is evaluated approximately for small g in Ap­
pendix D. The result is 

i = = _ g i / 2 € - i / 2 [ 1 _ i e ( 2 i n 2 + 7 + l - m 7 r ) + 0 ( e 2 ) ] . (5.6) 

where e is defined by (A3)-(A4). Numerically, 

A= - ^ 2
€ - 1 / 2 [ l - 0 . 9 0 9 4 € + O ( e 2 ) ] . (5.7) 

while (A9) gives 

A= - ^ 2 e - 1 / 2 [ l~0 .6352e+O(e 2 ) ] . (5.8) 

Thus for small g, the right-hand side of (5.5) gives the 
first term correctly, while the second term is off by 
nearly 50%. 

Fourthly, the question may be raised whether the 
results depend on the rather arbitrary definition of the 
cutoff A. For example, we may choose to use instead 

A=A/o-, (5.9) 

where a is a positive constant. Analogous to (2.9) and 
(2.10), we may expand the scattering length in terms 
of A and InA: 

^ln(A) = r A 2 n - 1 E < W m A ) — , (5.10) 
m=0 

and 

#»(A)= £ anmgW-l(lnAy (5.11) 

Since Bn(A) may be obtained from Bn(A) by Taylor's 
expansion, and 

^(lnA)1/2/^(lnA)-^0 

as A —*oo, Bn(A) also satisfies (4.5); i.e., 

5n(A)-(- l)-+1Cw
1 /V/2( lnA)1 /2+0((lnA)-1 /2) 

as A—>oo. 
Finally, since the motivation for the present investi­

gation comes originally from field theory, it remains to 
discuss the relevance of this model, or the lack thereof, 
to unrenormalizable field theory. We shall not enter into 
the general, and presumably unanswerable, question of 
the relation between problems of potential scattering 
and field theories; instead, we shall restrict ourselves to 
a comparison of the present calculation with that of the 
previous consideration on higher order leptonic weak 
interactions.5 Even if we make the questionable identi­
fication of A with £~1/2m,7 the following differences still 
come to mind immediately: 

A = lira E £n ( 1 )(A). 
A—>oo n = 0 

(5.4) 

7 The £ used in Ref. 5 is the renormalized £. Since the scalar 
particle with mass £~1/2w is unstable against decay into vector 
mesons, the value of £ cannot be real. The fact that £ is not real 
seems to lead to numerous complications that remain to be studied. 
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(1) Each of the infinite series considered is of the form 

(A*)*X [function of (AMnA)]. 

For -Bo(A), /x=— §; for the previous case, /x=l . In 
particular, (a) /x is negative here but is positive in the 
previous case, and (b) /* is an integer in the previous 
case but is not so here. 

(2) In the limit A —-> <*>, B0 does not approach a finite 
limit, while G does.5 

I t seems very difficult to assess the importance of the 
difference (1). I f we restrict ourselves to one power of r 
in the potential, then it is not hard to construct some­
what more complicated examples of scattering by a 
potential such that the difference (la) is removed. Un­
fortunately, the removal of the difference (lb) seems to 
necessitate the introduction of (lnr)2 in the potential. 
Whether this is worth doing is very questionable, since 
the set of Feynman-Dyson diagrams taken into account 
in the previous work5 is a rather complicated one and 
bears no conceivable relation to ladder diagrams or Born 
series. 

On the other hand, the difference (2) is almost 
certainly of paramount importance. I t should perhaps 
be emphasized that, in the previous consideration,5 it is 
not a separate assumption that G approaches a finite 
limit as £—>0, i.e., G has to approach the limit given 
there provided that F approaches a finite limit. And in 
the series for F, there is altogether only one logarithmic 
factor, which appears in the first term. Because of these 
differences, this model of scattering by a potential fails 
to throw any light on the problem of field theory. I t is 
tempting to speculate that perhaps logarithmic factors 
may arise for very different reasons and accordingly 
have different effects on infinite series. 

Generalization of the present consideration to the 
potential — gr~x \nr is considered in Appendix E. 
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APPENDIX A 

In this Appendix we solve (2.1) approximately for 
small g. With (3.3) and (p(x) = r V W , (2.1) is equiva­
lent to 

d2<p/dx2-g(\nx)<p=0, (Al) 

where the boundary conditions are <p(0)=l and 
£>(oo) = 0. The scattering length is A = d<p(x)/dx\xs=so. 

Suppose a scale transformation is carried out on the 
independent variable: x==ry. Then 

d2<p/dy2- gr2 (lnr+hvy) <p= 0. (A2) 

We choose r such that 

g r 2 l n r - l ; (A3) 
then 

d2<p/dy2— (1+e \ny)<p=0, 

where 

€ = ( l n r ) - 1 . (A4) 
Define 

/•CO 

$(y)=<p(y)+h dy'<p(y')<rtr-«'l]ny'; (A5) 
Jo 

then <p(y) satisfies d2{p/dy2—&=0 together with the 
boundary condition £(oo) = 0. Thus, $(y) = Ce~v and 

/•CO 

<p(y) = Ce-y-ie dy'<p(y')e-\»-v'\ I n / . (A6) 
J Q 

The constant C is given by 

/•CO 

C=l+h dy<p(y)e-»lny, (A7) 

and A by 

^ = - T - i ( 2 C - l ) . (A8) 

Finally, iteration of (A6) gives that 

4 = - ^ / 2 € - i / 2 { l - i € ( l n 2 + 7 ) 
- M V + ( l n 2 + 7 - 1 ) 2 - 3 ] + 0 ( € * ) } , (A9) 

where y is Euler's constant. 
The physical content of this approximate procedure 

is as follows. Since lnr is a slowly varying function, we 
approximate our potential — gr~Alnr by gV~~4, whose 
scattering length is — (g')1/2- We determine gf by requir­
ing the two potentials to be equal at r = (gf)112. Thus 

-gMg')m=g', (A10) 
or 

g'=T-2=glliT. (All ) 

Similar considerations may be applied to other problems 
of scattering by a potential which differs from a strongly 
singular repulsive potential by a slowly varying factor. 

APPENDIX B 

In this Appendix, we derive (3.21) and (3.30) directly 
from the \pn of (2.6) and (2.7). Similarly to (3.4), let 

^„(ff,A) = r-tyn(#,A), (Bl) 

then 

¥>o(ff,A)=l, (B2) 
and 

(pn+i(x,A)=— g / dx'Inx'min(x,x')<pn(%',A) (B3) 

for n^O. I t also follows from (2.8) that 

An(A) = limx^QX~1<pn(x,A)= (d/dx)<pn(x,A) | *=o. (B4) 

To get -So(A) and $i(A), it is sufficient to approximate 
(2.9) by 

^„(A)~g"A2"-1(lnA)"[an 0+aK i(lnA)-1]. (B5) 
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Accordingly, we approximate #>»(#,A) by and 

^n(*A)~gn{a»«2n(li^)wCl+fn(ln^)-1] I ; Q 2«+i^ n + ( 2 w +i ) - i ] / (2»+l ) 
n— 1 W==0 

_)_ ^ A2^1o?2n-2fc--1(lnA)*+1(ln^)n""Ar"1 f fi 
n - l "~ f t 

. « , . , , « . . «T , / , . N T . . , / , N T. , 

~o ' ==/ ^js^sinhzcoshCG—z), (B20) 
./o 

i /i. \/i Awni /Tj/cN it follows from (B18) that +iy(#,»)(lnA) ^ J . (B6) 

In (B5) and (B6), a 0 i = f ( » - l , ») = 0. By (B4), £i(A) coshO-|jB0(A) OsinhO 

fi(n—l,n) = ano and ri(n—l,n) = ani. (B7) 

The substitution of (B6) into (B3) gives, by (3.11), - / dzsr1 sinhs sinh(Q-z) W lnA 

a„=(2»I)-1, (B8) r- -o -. 

€H-I= * » - (4n+3)/(4»+2), (B9) = i ^ [ c o s h O + 0 - ^ fe"1 sinhs cosh(12-,) J , (B21) 

^(*,«) = C(2«-2*-1)12-^1.0, (BIO) w h e r e Q ig d e f i n e d b y (3>31)> T h e s u b s t i t u t i o n o f (3>21) 

p(ft, » + l ) = p(ft ,»)- |(2»-2ft+l)-1 into (B21) gives (3.30). 

X(4»-4f t+l ) , (Bll) APPENDIX C 

?7(&,w) = aAH-i,iCC2w—2&—1) Q -1 , (B12) We develop here a relation between the scattering 
n length and the Jost function6 at zero energy. At zero 

^(2n—2k)lak+i,o==—Z(2n-\-l)f\~1, (B13) energy, the Jost function f(r) and the associated g(r) 
*=0 for a potential V(r) may be defined by the integral 

equations8 

O H . x . i = - C ( 2 » + l ) i ™ - - ( ^ D / ( 2 » + l ) ] m-fdrV-r)V(rV(r')-l, (CI) 
and 

-i(2»-2*)-Hi8(M)[p(*,»)-i]+ij(*,»)}, (B14) g ( f ) _ I™ dr'(r'-r)V(r')g(r') = r. (C2) 

where (B10)-(B12) hold for k<n. Equation (3.21) Since/(f) and g(r) satisfy the same second-order linear 
follows immediately from (B13). ordinary differential equation, they can be expressed in 

Let terms of each other. For example, if f-(r)5*Q for all r, 

an=i:(2j-i)-\ (BIS) / r \ 
g(r) = f(r)(r-J ^{[/(/)]-2-l}J. (C3) 

then it follows from (B9) and (Bll) that Since the scattering length A is given by8 

£n=— fl— \(Jn (B16) 
and A = -limg(r)/f(r), (C4) 

r-»0 

p(k,n)= - (»-*—D+iowfc. (B17) We get from (C3) 

The substitution of (BIO) and (B12) into (B14) gives A= dr\ [ fWl - 2 —! 1 • (C5) 

n 

E C(2»—2^)!]_1[a4+i,l—aic+i,o(»—£—§ff«-*)] We remark parenthetically that (C.5) is a special case 
*=° of 

= C(2«+l)I]- 1[»+ior n+(»+l) / (2»+l)] . (B18) /•- r 
A(k)= I rff|C/(-*,r)]-s-*-s*r 

Since 7o I 

^ where &2 is the energy. 
£ Q2V„/(2»)!= / rfz^sinhzsinhCfl-z), (B19) 

(C6) 

• /o n-o y 0 8 A. Pais and T. T. Wu, Phys. Rev. 134, B1303 (1964). 
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APPENDIX D Let 

Here we evaluate (5.5) approximately. By (A3) and ^=(X—2)_ 1 , (E5) 
(A4), we have , ._ . . , , . 

men (E4J can be converted into the integral equation 
/•00 

^ = - g i / * e - i / » / dy[l+e]ny] <p(y) = 2rfT(v)J-1y1ltK,(2vy*l»-1) 

X[.cosh(l+tlnyyi*yJ*. (Dl) 
Expansion in e gives -2ve\ dy'iyy'yizivilvy^'2-1 

Jo 

1/2.-1/2 A = -gll2e 

= ^l/2e—1/2] 

l + € / dylnysechzy 
XK&vy^^iptyW*-* I n / , (E6) 

where I and K are the modified Bessel functions, and 
X (coslry—v sinh;y)+0(e2) I ^< anc* ^> are> respectively, the smaller and the larger 

J one of y and / . The first terms of the right-hand side of 
(A9) are generalized to 

1 - - M - / dy Iny sech.2y)+0(e2) I , 

(D2) 

A = - (g/e)vv2v[Y(\.+ v)~yiY{l~v){\-ev2[2 l n ^ + 2 

-^( l+, )~^(l - , ) ]+0(e 2 )} , (E7) 

, . , , , , - , where \p is the logarithmic derivative of the gamma 
This integral may be evaluated with the help of the f u n c t i 0 n 
known formula9 ^ ) = {d/dz) l n r ( s ) ^ ( E g ) 

f00 dyy* s e c h ^ = 2 1 - ( l - 2 1 - ) r ( l + ^ ) f W , (D3) I n t h e d e r i v a t i o n o f (E7)> t h e Allowing integral is used 
J 0 /«oo 

where f (*) is the Riemann zeta function. Differentiate JQ ^ W ^ r P ^ = 2 ~ 2 _ P C r ( 1 ~ / ) ) ] ~ 1 C r ( i - - i p ) ] 2 

(D3) with respect to s and then set s = 0 : xY(^~^p+v)T{^-^p-v) (E9) 

r ^ l n 3 r s e c h « y = l n T - 2 1 n 2 - 7 , (D4) w ^ " S 2 ? ? ; . 1 1 1 . * " * ' ?$ * * T ? t l ^ ° f ^ 
J0 Weber-Schafheitlm integral. For v= J, (E7) reduces to 

(A9) because of Gauss' theorem on ^(s).10 

where use has been made of the facts f (0)=— \ and (b) Analogous to (2.7)-(2.10), we define 
? ' (0 )=-§ ln(27r ) . The substitution of (D4) into (D2) 
g l V e S ( 5 , 6 )* tn+1(r,A)^g[ drYHnr'mm(r/)MrfA), (E10) 

APPENDIX E JA-i 

In this Appendix, we generalize the considerations of ^4w(A) = ^n(oo A) 
this paper to the potential — gr~x lnr, where X>3. The 
generalization is straightforward in principle, but some- /* °° _ 
what involved in the technical details. The same nota- =ZJ ^ d/rf~^(\nrf)^n(r

f A), (E l l ) 
tion is used for arbitrary X as for the special case X=4. A 

(a) We repeat first the procedure of Appendix A. The n 

radial differential equation is An(A) = gnAn^"2^~1 f ) anm(InA)n~™, (El2) 

^ M 2 + r x ( M ^ o . (Ei) and 

With x and <p defined as before, <p(x) satisfies oo 

d2<p/dx2—gxK4(mx)<p=0. (E2) n=3W 

The boundary conditions are not changed. Again let The Jost function F(x) satisfies 
x— ry, but with r chosen to satisfy 

g r x - 2 l n r = l , (E3) F(x)-g[ M(x-a!W^\na!FW) = %. (E14) 
then J o 

d2<p/dy2-yx-4(l+e\ny)<p=0. (E4) 
With Fn(x) defined in the obvious manner, it is found 

9 Bateman Manuscript Project, Higher Transcendental Func-
tions, edited by A. Erdelyi (McGraw-Hill Book Company, Inc., 
New York, 1953), Vol. I, p. 32. w See, for example, p. 19 of Ref. 9. 



S C A T T E R I N G BY S I N G U L A R P O T E N T I A L - g r - M n r B 1183 

that for large x . Since 

XP+0«M«]. (EH) / * - t ^ » r - ^ W / / w W . (E20) 

Thus, in the same sence as (3.16), w e g e t immediately that 

F(x)~T(l+v)x($z)->I,(z), (E16) JB0(A) = 2^-1[r(^)]-2(glnA)^_1(fi)//,_1(12), (E21) 
where 

z^2{gv2x^~2\nx)li\ (E17) 

Furthermore, (3.18) is replaced by 

F' (x) = dF (x)/dx = dF (a)/&* 
+ (2v)~lz[\+ v(lnx)~1']x~1dF(x)/dz, (E18) 

and 
Ff{x)~T{v){hz)-^Iv^{z). 

where 
(E22) ^=2(g^Ax~2lnA)1/2, 

and that as A—>°o? 

£ n ( A ) = ( - l ) » + V l r ( l + y ) ] - 1 

Xr(l- ,)C/(glnA)M-tf(l) , (E23) 

(E19) where CV is as before the binomial coefficient. 
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Charged-Pion Photoproduction from Deuterium with Polarized Bremsstrahlung* 

F. F. Liu, D. J. DRICKEY, AND R. F. MOZLEY 

High-Energy Physics Laboratory, Stanford Universityy Stanford, California 
(Received 13 July 1964) 

Measurements have been made on the ratio of pion-production cross sections at right angles to and along 
the photon electric-field vector. The positive and negative pions were first momentum-analyzed and counted 
by means of a counter telescope. Data have been taken at 45, 90, and 135° in the c m . system, and at proton 
energies of 225, 330, and 450 MeV. A comparison of the data is made with the dispersion-relation calculation 
of McKinley. 

I. INTRODUCTION 

THE photoproduction of positive and negative pions 
from deuterium has been extensively studied in 

the energy region from threshold to 500 MeV.1 In all 
previous experiments, either the total cross sections or 
the angular distributions were observed. The present 
experiment concerns the asymmetry of the pions photo-
produced by polarized gamma rays. The positive pion 
production from polarized gamma rays has been 
studied in this laboratory2 and the present experiment 
is an extension to the study of negative pion produc­
tion from deuterium. Measurements were made at 
photon energies of 225, 330, and 450 MeV. 

The production asymmetry A is defined as (oi-—<rn)/ 
(o-j.+0-n), where crx and (TU refer to the meson-production 
cross section perpendicular and parallel to the plane of 
polarization of the photon. The measurement of A for 
positive pion production from hydrogen has shown some 
disagreement with the dispersion-relation calculations, 

*This work was supported in part by the Office of Naval 
Research, the U. S. Atomic Energy Commission, and the Air 
Force Office of Scientific Research. 

1 D. H. White, R. M. Schectman, and B. M. Chasan, Phys. 
Rev. 120, 614 (1960), and references therein. 

2 R. E. Taylor and R. F. Mozley, Phys. Rev. 117, 835 (1960); 
R. C. Smith and R. F. Mozley, ibid. 130, 2429 (1963). 

and no reasonable set of pion-nucleon phase shifts can 
make those calculations compatible with the observed 
angular behaviors of the asymmetry. Moreover, the 
introduction of yirp coupling does not improve the 
agreement appreciably. The present experiment shows 
the same discrepancy between the theory and the 
measured values. The measurements were made at 
energies sufficiently remote from the pion-production 
threshold that the final-state interaction can reasonably 
be neglected. For photon energies between 200 and 500 
MeV, the analysis of meson production from deuterium 
in terms of free-nucleon cross sections has been demon­
strated to be satisfactory. 

II. EXPERIMENTAL METHOD 

A polarized bremsstrahlung beam, developed by 
Taylor and Mozley,2 was produced by placing a thin 
(0.003-in.) aluminum foil at the end of the Stanford 
Mark III linear accelerator. A beam of electrons 
striking the foil produced bremsstrahlung polarized 
perpendicular to the plane of emission. The polariza­
tion is a function of the angle which the photon makes 
with the initial direction of the electron, reaching a 
maximum at an angle of wc2/£o, where EQ is the initial 
electron energy. We have calculated the polarization 


